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There is only one class of problems that physicists can reliably solve: problems where there are no interactions.
Even notable cases of interacting problems that have been solved, such as 2 gravitating bodies or the 2D
Ising model, are solved by transforming the problem into one where there are no interactions (the 2 body
problem is reduced to a 1 body problem in an effective potential, and the Ising model is transformed into a
system of free fermions). This is troubling because things in the physical world tend to interact with each
other1. How can we make progress?

Mean field theory (MFT) has been the most reliable way to tackle interacting problems for nearly the last
120 years. The method gets its name from its original formulation where interacting variables, says spins on
a lattice in the Ising model, are replaced by their mean values. This makes the problem tractable, since spins
never interact directly but instead via the “mean field”. However this also imposes a constraint: the mean
values that the model predicts must agree with the mean value that we put into the interaction. We will see
that this “consistency condition” endows mean field theory with a variational structure that allows the effects
of interactions to propagate through our solution and yield good approximations.

Despite the simplicity and physical clarity of this formulation, MFT comes in many flavors, where it is often
not so clear what the “mean field” actually is. The vast proliferation of mean field methods stems from
the many challenging problems MFT has been applied to. Field theory, stat mech, neuroscience, and ML
(to name just a few) have each spun out versions of MFT aimed at addressing the specific questions and
challenges of that field. The essence of mean field theory that unifies these different forms is to replace an
interacting problem with a noninteracting one, and supplement it with a variational principle that injects the
physics of interest into our simplified model. The goal of this post is to review the many faces of mean field
theory, using the Ising model as a vehicle to introduce them. I hope to tie these different methods together
in a logical manner and justify why they all share the name “mean field theory”, while at the same time
emphasizing the difference in ability and physical content of these models.

I begin with a review of the Ising model, but assume the reader is familiar with the basics of statistical
physics. I then introduce the “standard” Weiss Curie mean field theory to set the stage, before showing how
this method implies a variational approach to the problem. From there I discuss how mean field methods
can be cast in a field theoretic language, and end by discussing improvements to mean field theory that are
especially important in neural network style models.

1 The Ising Model
The Ising model is a simple classical spin model for understanding ferromagnetism in solids. We consider a
𝐷 dimensional hyper-cubic lattice with spins 𝑠𝑖 ± 1 on lattice vertices indexed by 𝑖. We suppose there are
interactions only between neighboring spins in the presence of a possibly spatially varying external magnetic
field ℎ𝑖, and denote the total number of spins by 𝑁 which we take → ∞ in the thermodynamic limit. The
Hamiltonian is then given by:

𝐻[𝑠] = −1
2

∑
𝑖,𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 − ∑
𝑖

ℎ𝑖𝑠𝑖

1Or so I’m told.
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where 𝐽𝑖𝑗 = 𝐽 if 𝑖 and 𝑗 are neighboring sites, and 0 otherwise2. We see that the energy is minimized when
all spins take on the same value and collectively magnetize into an ordered state, with 𝐽 controlling the
strength of this cooperative interaction. This cooperation is tempered by thermal fluctuations which seek to
destroy order. The competition between these 2 effects makes this a prototypical model for studying phase
transitions. The Ising model actually works much better at modeling ferromagnetism in real solids than
it has any business to, for deep reasons that we will not cover here (Goldenfeld 2018). At temperature 𝑇
(𝛽 ≡ 1/𝑘𝐵𝑇), the object of statistical mechanics is to compute the partition function from this Hamiltonian:

𝑍 = Tr{𝑠}𝑒−𝛽𝐻[𝑠] = ∑
𝑠1=±1

… ∑
𝑠𝑁=±1

𝑒−𝛽𝐻[𝑠]

since the associated free energy 𝐹 ≡ −𝛽−1 ln 𝑍 acts as the generating functional for observables. For example
we can compute the average spin3 as

𝑚𝑖 ≡ ⟨𝑠𝑖⟩ = 1
𝑍

Tr{𝑠} [𝑠𝑖𝑒−𝛽𝐻[𝑠]] = 1
𝑍

Tr{𝑠} [𝛽−1 𝜕
𝜕ℎ𝑖

𝑒−𝛽𝐻[𝑠]] = 𝛽−1 1
𝑍

𝜕𝑍
𝜕ℎ𝑖

= − 𝜕𝐹
𝜕ℎ𝑖

The derivatives of 𝐹 encode the thermodynamics of the system by generating thermal averages. The
magnetization is often referred to as an order parameter, since it becomes non-zero in the ordered state. A
quantity of fundamental importance is the connected correlation function

𝐺𝑖𝑗 ≡ ⟨𝑠𝑖𝑠𝑗⟩𝑐
= ⟨𝑠𝑖𝑠𝑗⟩ − ⟨𝑠𝑖⟩ ⟨𝑠𝑗⟩ = ⟨(𝑠𝑖 − ⟨𝑠𝑖⟩)(𝑠𝑗 − ⟨𝑠𝑗⟩)⟩ (1)

Correlations are inherently driven by interactions. If the magnetization fluctuates at a site 𝑖 it will “polarize”
its neighbors to fluctuate in the same direction, and this effect will propagate through the system. This is the
first sign that the correlation function may be difficult to handle in mean field theory, which seeks to eschew
interactions. 𝐺𝑖𝑗 arises from the free energy as (dropping {𝑠} subscripts for clarity)

𝐺𝑖𝑗 = 1
𝑍

Tr [𝑠𝑖𝑠𝑗𝑒−𝛽𝐻] − 1
𝑍2 Tr [𝑠𝑖𝑒−𝛽𝐻] Tr [𝑠𝑗𝑒−𝛽𝐻] = 𝛽−2

𝑍
𝜕2𝑍

𝜕ℎ𝑖𝜕ℎ𝑗
− 𝛽−2

𝑍2
𝜕𝑍
𝜕ℎ𝑖

𝜕𝑍
𝜕ℎ𝑗

𝛽−2 [ 1
𝑍

𝜕2𝑍
𝜕ℎ𝑖𝜕ℎ𝑗

+ 𝜕
𝜕ℎ𝑗

( 1
𝑍

) 𝜕𝑍
𝜕ℎ𝑖

] = 𝛽−2 𝜕2 ln 𝑍
𝜕ℎ𝑗𝜕ℎ𝑖

= −𝛽−1 𝜕2𝐹
𝜕ℎ𝑗𝜕ℎ𝑖

A closely related concept is the local susceptibility

𝜒𝑖𝑗 ≡ 𝜕𝑚𝑖
𝜕ℎ𝑗

= − 𝜕2𝐹
𝜕ℎ𝑖𝜕ℎ𝑗

= 𝛽𝐺𝑖𝑗

This relationship between 𝐺𝑖𝑗 and 𝜒𝑖𝑗 is referred to variously as the “fluctuation dissipation theorem” or the
“static susceptibility sum rule”. Though 𝐺 and 𝜒 are mathematically equivalent, their physical interpretations
are quite different. 𝐺 measures how the internal thermal fluctuations propagate through the system, while
𝜒 measures how the system’s response to an external perturbation propagates. It’s intuitive that these
quantities should be related, but we’ll see that the difference in their physical content will rear its head in
mean field theory.

In 1 dimension, the Ising model is easily solved via the Transfer Matrix method or high temperature expansion
(Bellac and Barton 1992). In 2 dimensions, the Ising model was first exactly solved by Lars Onsager in a tour
de force of theoretical physics (Onsager 1944). Alternative solutions (SCHULTZ, MATTIS, and LIEB 1964;
Kac and Ward 1952) followed shortly, though all solutions are in the presence of 0 external field. No exact
solution has been found in 3 dimensions. No solutions are needed in 𝐷 ≥ 4 dimensions because the results of
MFT are exact in those dimensions (Goldenfeld 2018) (a fact that we will not touch on here). Our focus will
not be on these exact solutions, but on the zoo of approximate methods of solution that originated almost 40
years before Onsager’s solution, and have seen continous development into the present day.

2We adopt this notation so that we will be able to express future calculations in matrix form rather than clunky nearest
neighbor sums. This notation is also amenable to generalizing to different models where 𝐽𝑖𝑗 is fully connected or randomly
distributed as in a spin glass.

3I will often refer to 𝑚𝑖 as the local magnetization or sometimes just the magnetization, though the latter sometimes refers to
the bulk magnetization of the system obtained by averaging 𝑚𝑖 over space. I hope it will be clear from context which I am
referring to.
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1.1 Other Kinds of Ising Models
Before we move on to solving the Ising model I should briefly mention the plethora of other spin based
models. The most famous extension of the Ising model is the Spin Glass, which is an Ising model on a
lattice in which the couplings are randomly distributed 𝐽𝑖𝑗 ∼ 𝒩(0, 𝐽2

0 ) if 𝑖 and 𝑗 are nearest neighbors.
This model gives rise to an immensely complex spin glass phase due to the fact that it allows for geometric
frustration: combinations of positive and negative bonds can lead to configurations in which one cannot
simultaneously put all spin pairs into their lowest energy states. This leads to a proliferation of metastable
states in the low temperature phase. Randomness in the couplings is typically referred to as quenched disorder,
meaning that the randomness is “frozen in” while the microscopic spin variables fluctuate on a much faster
thermal timescales. Mathematically we express this by computing the free energy at fixed couplings, and
then averaging over the couplings afterwards. This is accomplished via the “replica trick” (Mézard, Parisi,
and Virasoro 1987) by using the following identity

⟨ln 𝑍⟩ = lim
𝑛→0

= ⟨𝑍𝑛⟩ − 1
𝑛

The spin glass is often studied in terms of its infinite range counterpart, the Sherrington-Kirkpatrick model4.
Specifically we have 𝐽𝑖𝑗 ∼ 𝒩(0, 𝐽2

0 /𝑁) for all pairs 𝑖, 𝑗, and the 1/𝑁 scaling in the variance is to ensure that
the energy scales extensively as 𝑁. The statistical physics of the spin glass phase and the replica methods
used to compute it forms a fascinating subject that we will not dive into here, but I mention it because of the
deep connection between spin glasses and neural neworks. It was shown that certain models of emergent
collective memory minimize an energy function that is identical to the Sherrington Kirkpatrick Hamiltonian
(Hopfield 1982). The spin states act as binary codes, and the network utilizes the many metastable states of
the spin glass to store these codes. In this post I strive to leave hamiltonians in their most general form with
𝐽𝑖𝑗 unspecified, so that the results we derive can be applied broadly across statistical physics style lattice
models, disordered spin systems, and neural networks. I also emphasize that these MFT techniques extend
far beyond the Ising model, we only restrict ourselves here so that we have a unified vehicle with which to
introduce methods.

2 Weiss-Curie Mean Field Theory
We’ll start by looking at the original formulation of MFT by Curie and Weiss, in which the “mean field”
nature of the solution is most clear. A spin can be decomposed into its static mean value plus a dynamic
fluctuation: 𝑠𝑖 = 𝑚𝑖 + 𝛿𝑠𝑖. We can then write the interacting term as

𝑠𝑖𝑠𝑗 = (𝑚𝑖 + 𝛿𝑠𝑖)(𝑚𝑗 + 𝛿𝑠𝑗) = 𝑚𝑖𝑠𝑗 + 𝑚𝑗𝑠𝑖 − 𝑚𝑖𝑚𝑗 + 𝛿𝑠𝑖𝛿𝑠𝑗

The first 2 terms show how the spins couple to the mean field, the third is a constant which can be ignored,
and the final term shows how the fluctuations couple to each other. The idea behind mean field theory is to
drop the interaction between fluctuations, effectively taking 𝑠𝑖𝑠𝑗 → 𝑠𝑖𝑚𝑗 + 𝑠𝑗𝑚𝑖. The Hamiltonian is then

𝐻𝑀𝐹 = − ∑
𝑖,𝑗

𝐽𝑖𝑗𝑠𝑖𝑚𝑗 − ∑
𝑖

ℎ𝑖𝑠𝑖 ≡ − ∑
𝑖

ℎ𝑒
𝑖 𝑠𝑖 (2)

Where we define the effective external field as:

ℎ𝑒
𝑖 ≡ ℎ𝑖 + ∑

𝑗
𝐽𝑖𝑗𝑚𝑗

The field that a spin feels at site 𝑖 is the existing external field plus the sum of the magnetizations of all of its
neighbors. The mean field hamiltonian is now completely decoupled and the partition function sum factorizes

𝑍 =
𝑁

∏
𝑖=1

( ∑
𝑠𝑖=±1

𝑒𝛽ℎ𝑒
𝑖 𝑠𝑖) = 2𝑁

𝑁
∏
𝑖=1

cosh(𝛽ℎ𝑒
𝑖 ) ⟹ 𝐹 = −𝛽−1

𝑁
∑
𝑖=1

ln (2 cosh(𝛽ℎ𝑒
𝑖 ))

4The infinite range model is in fact the mean field theory for the spin glass on a finite dimensional lattice. We will explain
this fact in the final section.
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As promised, the problem was made tractable by removing interactions. We must now ensure that the MFT
is self consistent:

𝑚𝑖 =
∑𝑠𝑖=±1 𝑠𝑖𝑒𝛽𝑠𝑖ℎ𝑒

𝑖

2 cosh(𝛽ℎ𝑒
𝑖 )

= tanh(𝛽ℎ𝑒
𝑖 )

which gives the following self consistency constraint equation:

𝑚𝑖 = tanh (𝛽 (ℎ𝑖 + ∑
𝑗

𝐽𝑖𝑗𝑚𝑗)) (3)

Setting the external field uniformly to 0 we can take all the 𝑚𝑖 = 𝑚 to be equal by symmetry, and denoting
the lattice coordination number by 𝑧 = 2𝐷 we have

𝑚 = tanh(𝛽𝑧𝐽𝑚) (4)

which can be solved graphically.
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Figure 1: Equation 4 can be solved graphically by plotting the left and right hand sides of the equation and
looking for intersections. There are only non-zero solutions for 𝑚 when the slope of the tanh is greater than
1.

When the slope of the tanh function at the origin is less than 1 there is only the trivial solution at 𝑚 = 0.
When the slope is greater than 1, there exist solutions at non-zero 𝑚, so we expect a phase transition at
𝛽𝑐 = (2𝐽𝐷)−1 where all of the spins collectively magnetize in the same direction and the system orders.
Whether the system chooses the positive or negative solution for 𝑚 is the subject of the fascinating topic of
spontaneous symmetry breaking (Goldenfeld 2018).

2.1 Correlation Functions and Susceptibility
We have shown that MFT predicts a phase transition from a disordered (0 net magnetization) to ordered
(collectively magnetized) phase at low temperatures. What do the correlation functions and susceptibility look
like in these phases? Notice that from Equation 1 we can write the correlation function as 𝐺𝑖𝑗 = ⟨𝛿𝑠𝑖𝛿𝑠𝑗⟩,
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but in our mean field theory we explicitly set 𝛿𝑠𝑖𝛿𝑠𝑗 = 0 so it seems 𝐺𝑖𝑗 = 0. This makes sense: a theory
which explicitly ignores fluctuations cannot compute the thermodynamics of fluctuations. The correlation
function is however non-zero onsite (𝑖 = 𝑗) since 𝑠𝑖 = ±1, so 𝑠2

𝑖 = 1, and ⟨𝑠2
𝑖 ⟩ = 1. Thus we must have

𝐺𝑖𝑗 = 𝛿𝑖𝑗(1 − 𝑚2
𝑖 ) (5)

Should the susceptibility then also only be non-zero onsite? Let’s proceed by differentiating Equation 3
directly.

𝜒𝑖𝑗 = 𝜕𝑚𝑖
𝜕ℎ𝑗

= 𝛽(1 − 𝑚2
𝑖 ) (𝛿𝑖𝑗 + ∑

𝑘
𝐽𝑖𝑘𝜒𝑘𝑗) (6)

We can formally solve this equation in matrix form (I provide an explicit solution via fourier transforms in
the Appendix Section 7.1) by defining the diagonal matrix 𝜒0

𝑖𝑖 = 𝛽(1 − 𝑚2
𝑖 ). Then

= (I − 0J)−10 = 0 + 0J0 + 0J0J0 + … (7)

0 alone agrees with Equation 5, but higher order terms in the expansion generate additional contributions.
The first term gives non-zero values for nearest neighbor elements of , and the next gives next-next-nearest
neighbor contributions, and so on. It seems that correlations and susceptibility are no longer equivalent in
mean field theory. Physically, our model cannot make predictions about internal thermal fluctuations since
we explicitly ignore them, but Equation 3 has injected enough information about interactions that the model
can predict how external perturbations propagate. Mathematically, the distinction is more subtle. Something
that is obscured by Weiss-Curie mean field theory is that the role of free energy, and the manner in which we
calculate thermal averages of order parameters changes drastically in mean field theory. We will now present
an alternative approach to MFT that brings these features to light.

3 Variational Mean Field Theory
The tractability of MFT comes from the fact that the mean field Hamiltonian Equation 2 does not have
interactions between neighboring spins. We saw however that the form of 𝐻𝑀𝐹 is not arbitrary and ℎ𝑒

𝑖 is
constrained by the consistency conditions. One question we could ask is: can we find a non-interacting theory
that does better than mean field theory? Suppose we introduced a trial hamiltonian

𝐻𝑔 = − ∑
𝑖

𝑔𝑖𝑠𝑖

parameterized by 𝑔𝑖. Could we find a set of values for the 𝑔𝑖 that gave better predictions than mean field
theory? Let 𝑝(𝑠) = 𝑍−1 exp(−𝛽𝐻) be the true probability distribution over microstates from the interacting
Ising Hamiltonian, and let 𝑞(𝑠) = 𝑍−1

𝑔 exp(−𝛽𝐻𝑔) be the distribution from the trial Hamiltonian. We can
find the best possible trial Hamiltonian by minimizing the KL divergence between the 2 distributions.

KL(𝑞||𝑝) = Tr{𝑠} (𝑞(𝑠) ln 𝑞(𝑠)
𝑝(𝑠)

) = 𝛽𝐹𝑔 − 𝛽𝐹 + 𝛽 ⟨𝐻 − 𝐻𝑔⟩
𝑞

Where ⟨⋅⟩𝑞 denotes averages with respect to the trial distribution 𝑞(𝑠). Using the fact that the KL divergence
≥ 0 and 𝐹𝑔 = ⟨𝐻𝑔⟩

𝑞
− 𝑇 𝑆𝑞 (where 𝑆𝑞 denotes the entropy of 𝑞) we obtain the Bogoliubiov inequality

𝐹 ≤ 𝐹𝑔 + 𝛽 ⟨𝐻 − 𝐻𝑔⟩
𝑞

= ⟨𝐻⟩𝑞 − 𝑇 𝑆𝑞 ≡ ℱ[𝑔]

We define the variational free energy as ℱ, and see from the above that it acts as an upper bound on the
true free energy. We can interpret minimizing the KL divergence as closing the gap between ℱ and the true
free energy 𝐹 by minimizing ℱ. Computing the averages gives

ℱ[𝑔] = −𝛽−1 ∑
𝑖

ln(2 cosh(𝛽𝑔𝑖)) − 1
2

∑
𝑖𝑗

𝐽𝑖𝑗𝑚𝑖𝑚𝑗 − ∑
𝑖

ℎ𝑖𝑚𝑖 + ∑
𝑖

𝑔𝑖𝑚𝑖 (8)
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where 𝑚𝑖 = tanh(𝛽𝑔𝑖). differentiating gives

𝜕ℱ
𝜕𝑔𝑖

= −𝛽(1 − 𝑚2
𝑖 ) ∑

𝑗
𝐽𝑖𝑗𝑚𝑗 − 𝛽(1 − 𝑚2

𝑖 )(ℎ𝑖 − 𝑔𝑖)

We seek the minimum by setting to 0 which gives

𝑔∗
𝑖 = ℎ𝑖 + ∑

𝑗
𝐽𝑖𝑗𝑚𝑗 (9)

or multiplying by 𝛽 and taking the tanh

𝑚𝑖 = tanh (𝛽 (ℎ𝑖 + ∑
𝑗

𝐽𝑖𝑗𝑚𝑗)) (10)

The solution of the variational problem is exactly the mean field solution, and 𝑔∗
𝑖 has the exact same form as

ℎ𝑒
𝑖 . Mean field theory is the best possible non-interacting approximation.

3.1 What is Free Energy in Mean Field Theory?
We define the mean field free energy as

𝐹𝑀𝐹[ℎ] = min
𝑔

ℱ[𝑔; ℎ] = ℱ[𝑔∗; ℎ]

Note that this is not the factorized free energy 𝐹𝑔; that was only used as a vehicle to compute averages within
a tractable model. 𝐹𝑀𝐹 is the “correct” approximate free energy in the sense that it is as close as possible to
the true free energy, even though it is not calculated directly from a partition function sum over microscopic
variables. We can see the difference explicitly by plugging Equation 9 into Equation 8

𝐹𝑀𝐹[ℎ] = 𝐹𝑔∗ − 1
2

∑
𝑖𝑗

𝐽𝑖𝑗𝑚𝑖𝑚𝑗

𝐹𝑔 only includes interactions through 𝑔∗, whereas 𝐹𝑀𝐹 explicitly accounts for them. We recover

−𝜕𝐹𝑀𝐹
𝜕ℎ𝑖

= − ∑
𝑗

𝜕ℱ(𝑔; ℎ)
𝜕𝑔𝑗

∣
𝑔𝑗=𝑔∗

𝑗

𝜕𝑔𝑗

𝜕ℎ𝑖
∣
𝑔𝑗=𝑔∗

𝑗

− 𝜕ℱ(𝑔∗; ℎ)
𝜕ℎ𝑖

= −𝜕ℱ(𝑔∗; ℎ)
𝜕ℎ𝑖

= 𝑚𝑖(𝑔∗) (11)

since ℱ(𝑔∗; ℎ) is stationary by definition, but notice that differentiating 𝐹𝑀𝐹 wasn’t actually necessary to
generate the thermal averages of the 𝑠𝑖. We were able to calculate 𝑚𝑖 in Equation 10 as a consequence of
minimizing ℱ. This highlights a major conceptual shift in mean field theory:

Mean field theory calculates thermodynamics by solving a variational problem. The free energy does
not play the role of a generating function, but instead organizes our approximation by acting as a target
for our variational problem.

In the same way that minimizing action give you classical equations of motion, minimizing free energy gives
you an equation of state. This perspective explains the apparent contradiction from the end of the last
section: the susceptibility and correlation do not agree because the generating function arguments used to
relate them break down in this framework. Something else that arises operationally is that mean field
theory replaces integration with optimization.

3.2 Gibbs Free Energy
If optimization is what gives us order parameters 𝑚𝑖, can we formulate MFT as an optimization directly over
𝑚𝑖 instead of over the trial external fields 𝑔𝑖? To do this, we must Legendre transform from a fixed field
ensemble to a fixed magnetization ensemble:

𝐺𝑀𝐹[𝑚] = 𝐹𝑀𝐹[ℎ(𝑚)] + ∑
𝑖

ℎ𝑖(𝑚)𝑚𝑖 (12)
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ℎ(𝑚) is computed by inverting Equation 11. The physical interpretation of the second term is as the external
field necessary to enforce that ⟨𝑠𝑖⟩ = 𝑚𝑖, since the 𝑚𝑖 are specified as independent variables in the ensemble,
rather than derived. Again leveraging Equation 11 we easily see that

𝜕𝐺𝑀𝐹
𝜕𝑚𝑖

= ∑
𝑗

𝜕𝐹𝑀𝐹
𝜕ℎ𝑗

𝜕ℎ𝑗

𝜕𝑚𝑖
+ ∑

𝑗

𝜕ℎ𝑗

𝜕𝑚𝑖
𝑚𝑗 + ℎ𝑖 = ℎ𝑖

Using the fact that under the trial distribution 𝑃(𝑠𝑖 = 1) = 1
2 (1 + 𝑚𝑖) we can write an explicit expression for

𝐺𝑀𝐹:
𝐺𝑀𝐹[𝑚𝑖] = 𝛽−1 ∑

𝑖
[1 + 𝑚𝑖

2
ln 1 + 𝑚𝑖

2
+ 1 − 𝑚𝑖

2
ln 1 − 𝑚𝑖

2
] − 1

2
∑

𝑖𝑗
𝐽𝑖𝑗𝑚𝑖𝑚𝑗

And minimizing with respect to 𝑚𝑖 recovers Equation 10. The formulation in terms of 𝐺𝑀𝐹 also sheds light
on the susceptibility:

𝜒−1
𝑖𝑗 = 𝜕ℎ𝑖

𝜕𝑚𝑗
= 𝜕2𝐺𝑀𝐹

𝜕𝑚𝑖𝜕𝑚𝑗

The susceptibility (specifically its inverse) is encoded in the curvature of the Gibbs free energy landscape.
This is because the Hessian matrix on the right hand side measures the curvature of a surface at it’s fixed
point. We saw that mean field theory neglects fluctuations; this is intimately related to it’s variational
nature. By replacing integration with optimization our model is only informed by the free energy at a single
point, rather than the whole landscape. Fluctuations are what allow the ensemble to explore this whole
space. We see hints of this now in the susceptibility: in order to compute 𝜒𝑖𝑗 we need to know the shape
of the minimum, not just it’s location. MFT cannot compute the correlation function because it does not
internally have access to this broader geometric structure, but it can probe this second order structure via
the response function. This also hints at a possible way to extend mean field theory. If we could find a way
to systematically introduce fluctuations in a controlled perturbative manner, could we improve our model
and possibly compute the correlation function?

4 Field Theoretic Approach
The difficulty with handling fluctuations in a spin model is that they are discrete. There is no controlled way to
introduce interactions “a little bit at a time”; they are all or nothing. If we want to use perturbative methods,
we need a model with continuous degrees of freedom that can be expanded infinitesimally. Remarkably,
discrete spin variables can be turned into continuous variables via the Hubbard-Stratanovich transform:

exp [1
2

∑
𝑖𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗] = 1
(2𝜋)𝑁/2√det(𝐽)

∫
∞

−∞
∏

𝑖
𝑑𝜙𝑖𝑒

− 1
2 ∑𝑖𝑗 𝜙𝑖(𝐽−1)𝑖𝑗𝜙𝑗+∑𝑖 𝜙𝑖𝑠𝑖

This follows from completing the square in the integrand and performing the Gaussian integral, but in the
reverse direction it has the effect of decoupling the spins from each other. Spins interact indirectly via an
intermediate field 𝜙 with Gaussian self interactions. The partition function then has the form:

𝑍 ∝ ∫ ∏
𝑖

𝑑𝜙𝑖𝑒
− 1

2𝛽 ∑𝑖𝑗 𝜙𝑖𝐽−1
𝑖𝑗 𝜙𝑗Tr [𝑒∑𝑖 𝑠𝑖(𝜙𝑖+𝛽ℎ𝑖)]

In this form the spin contribution factorizes and the trace can be performed to give

𝑍 =∝ ∫ ∏
𝑖

𝑑𝜙𝑖𝑒−𝑆[𝜙]

Where the action 𝑆[𝜙] is given by

𝑆[𝜙] = 1
2𝛽

∑
𝑖𝑗

𝜙𝑖𝐽−1
𝑖𝑗 𝜙𝑗 − ∑

𝑖
ln(2 cosh(𝜙𝑖 + 𝛽ℎ𝑖)) (13)
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Notice that this action scales approximately as ∼ 𝑁, so by the saddle point approximation we expect that the
integral will be dominated by its value at the minimum of the action. We can then organize our approximation
by finding the minimum, and then expanding fluctuations about this point in increasing order. To find the
minimum, denoted by 𝜙∗

𝑖 , we demand that

𝜕𝑆
𝜕𝜙𝑖

= 1
𝛽

∑
𝑗

𝐽−1
𝑖𝑗 𝜙∗

𝑗 − tanh(𝜙∗
𝑖 + 𝛽ℎ𝑖) = 0

defining 𝑚𝑖 = 𝛽−1 ∑𝑗 𝐽−1
𝑖𝑗 𝜙∗

𝑗 at the minimum we get

𝑚𝑖 = tanh (𝛽 (ℎ𝑖 + ∑
𝑗

𝐽𝑖𝑗𝜙𝑗))

These are exactly the consistency equations of mean field theory! It makes sense physically that 𝜙𝑖 plays
the role of the magnetization 𝑚𝑖: it is the field that mediates interactions between spins. We again see
the mean field equations arise as the solution to a variational problem, but it is of a different nature this
time. The action in Equation 13 has no guarantee of being an upper bound on the true free energy. It
is minimized because that is where we expect the dominant contribution to the free energy to come from,
but it is not the “best” approximate free energy in the same sense as it was in variational MFT. We can
now incorporate the lowest order interactions between fluctuations by expanding to second order about the
minimum 𝜙𝑖 = 𝜙∗

𝑖 + 𝛿𝜙𝑖:

𝑆[𝛿𝜙] ≈ 𝑆[𝜙∗] + 1
2

∑
𝑖𝑗

𝛿𝜙𝑖Γ𝑖𝑗𝛿𝜙𝑗 + 𝑂(𝛿𝜙3)

where
Γ𝑖𝑗 = 1

𝛽
𝐽−1

𝑖𝑗 − (1 − 𝑚2
𝑖 )𝛿𝑖𝑗

We could do the integral and solve for the free energy, but we recognize that the second order action defines
a Gaussian distribution so we can immediately read off the correlation function as

⟨𝛿𝜙𝑖𝛿𝜙𝑗⟩ = Γ−1
𝑖𝑗 ≡ (Γ0 − Π)−1

𝑖𝑗

where we have defined the “bare” kernel Γ0 ≡ 𝛽−1𝐽−1 and polarization Π ≡ diag(1 − 𝑚2
𝑖 ). Notice that the

polarization is what we derived for the on-site correlation function in Equation 5. It represents how a spin
responds to its own fluctuations. The bare kernel on the other hand is a new contribution to the correlation
function that arises directly from the coupling of spins. Defining the correlation matrix 𝐺𝑖𝑗 ≡ ⟨𝛿𝜙𝑖𝛿𝜙𝑗⟩ we
can expand the matrix inversion to give

𝐺 = Γ−1
0 + Γ−1

0 ΠΓ−1
0 + Γ−1

0 ΠΓ−1
0 ΠΓ−1

0 + …

Up to matrix multiplications by 𝐽−1 to convert between 𝜙𝑖 and 𝑚𝑖, this is exactly the expansion we obtained
for the susceptibility in Equation 7! The ability of the Gaussian field theory to give a non-trivial answer
for the correlation function depends crucially on the fact that we were able to include interactions between
fluctuations, but still in a tractable manner. I emphasize once more the subtle difference in the variational
nature of the Gaussian theory from the previous formulation of mean field theory. The Gaussian theory
doesnt replace integration with optimization, it instead uses optimization to find the largest contribution
to the free energy for which integration is tractable. The approximate free energy we obtain still acts as a
generating function, and does not necessarily bound the true free energy.

Note that while we have kept the calculation above in its most general form by leaving 𝐽 as a matrix, the
Ising model on a lattice can be solved explicitly in Fourier space by exploiting the translationally invariant
nature of the problem. This is essentially identical to the susceptibility calculation we do in Section 7.1. A
more “statistical field theory” flavored approach is to take the continuum limit 𝜙𝑖 → 𝜙(𝑥) and express 𝑍 as a
functional integral over fields. The key insight there is to show that the 𝐽 matrix turns into a gradient of the
field. While these are interesting approaches from a field theoretic perspective, the general form is much
more relevant to modern systems of interest such as neural networks and spin glasses.
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4.1 The Random Phase Approximation
What is the interpretation of the series expansion for the correlation function? Though they are equivalent,
we work with the susceptibility 𝜒𝑖𝑗 for the magnetization since it is more physical. Recall

= (I − 0J)−10 = 0 + 0J0 + 0J0J0 + …

Where 𝛽−1𝜒0 = diag(1−𝑚2
𝑖 ). 𝜒0 describes how a single spin responds to an external perturbation in isolation,

without any effects from other spins. Per Equation 3 this change in 𝑚𝑖 will induce a change in its neighbors,
which will then feedback into 𝑚𝑖 and re-perturb it. This is what the second term in the expansion encodes.
Higher terms continue this chain reaction: the 𝑛𝑡ℎ order term describes all possible length 𝑛 chains of influence
that start and end on site 𝑖. The susceptibility (or correlation function) at a single site requires us to sum
over all possible paths in the interaction network that could affect site 𝑖. This is referred to in the physics
literature as the “Random Phase Approximation”

In the language of Feynman diagrams, we can think of 𝜒0 as a local irreducible bubble diagram connected to
a site, and 𝐽 as a propagator that connects different sites. The expansion is then a sum of “bubble-chain”
diagrams: local bubble insertions to describe how the field responds, and chain of propagators to describe how
this response moves through the system. Although the resummed series can be solved exactly (see Appendix
Section 7.1), this interpretation sheds light on the structure of our approximation. Mean field theory only
retains interaction structure with a specific linear chain topology. Branching or crossing paths of influence
are entirely possible, but they couple interactions in a way that we discard in mean field theory.

5 The TAP equations
All of our different approaches to mean field theory have, in one form or another, produced the same equation
of state Equation 3. The physical content of these models is that the “effective field” felt by a spin at site 𝑖 is
given by

ℎ𝑒
𝑖 = ℎ𝑖 + ∑

𝑖𝑗
𝐽𝑖𝑗𝑚𝑗

Notice that the 𝑚𝑗 determining the field at 𝑖 depend on 𝑚𝑖 itself. ℎ𝑒
𝑖 is supposed to account for the influence

of the environment on spin 𝑖, but it has included information about spin 𝑖. The distinciton between spin at 𝑖
and environment has not been made precise. Physically, the spin at 𝑖 polarizes it neighbors which then feed
back into 𝑖 and produce an “overcounting” effect. In the standard Ising model on a square lattice this is
negligible; it is a second order effect summed over a small number of local neighbors. In “dense” networks
which are highly connected this can have a non-negligible effect since the contribution is summed over a
macroscopic number of spins. The TAP equations are the next highest order correction to Equation 3 that
accounts for this effect. They first arose in the context of the infinite range spin glass model, where one can
show that they are the only correction necessary. The equations, and higher order corrections, can be derived
systematically via the Plefka expansion of the Gibbs free energy, but I’ll present a more physical approach
based on the argument given above.

5.1 The Cavity Method
I present an intuitive sketch of the derivation here. A plethora of more rigorous approaches can be found in
(Opper and Saad 2001). In order to determine the effective field at 𝑖 self consistently without feedback, we
should consider the system with the spin at 𝑖 removed. i.e. with a cavity at 𝑖. Define

𝑚\𝑖
𝑗 ≡ ⟨𝑠𝑗⟩\𝑖

to be the magnetization at 𝑗 in the system where the spin at 𝑖 is removed. Formally, you can think of this as
an Ising model where 𝐽𝑖𝑗 = 0 ∀𝑗 at fixed 𝑖. Then we should have

ℎ𝑒\𝑖
𝑖 = ℎ𝑖 + ∑

𝑗
𝐽𝑖𝑗𝑚

\𝑗
𝑗
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We can complete the system by expressing 𝑚\𝑖
𝑗 in terms of 𝑚𝑗 and writing the equation of state as 𝑚𝑖 =

tanh(𝛽ℎ𝑒\𝑖
𝑖 ). To do this, imagine we add the spin back to site 𝑖, then to first order the effective field felt at 𝑗

changes by 𝛿ℎ𝑒
𝑗 = 𝐽𝑖𝑗𝑠𝑖 ≈ 𝐽𝑖𝑗𝑚𝑖. We can calculate the change this induces in 𝑚\𝑖

𝑗 via the susceptibility

𝑚𝑗 − 𝑚\𝑖
𝑗 ≈ ∑

𝑘
𝜒\𝑖

𝑗𝑘𝛿ℎ𝑒
𝑘

notice that 𝜒\𝑖 above is already multiplied by a perturbative term, so to the order we are working in we can
consider only the lowest order contributions to 𝜒:

∑
𝑘

𝜒\𝑖
𝑗𝑘𝛿ℎ𝑒

𝑘 ≈ 𝜒\𝑖
𝑗𝑗𝛿ℎ𝑒

𝑗 = 𝛽(1 − (𝑚\𝑖
𝑗 )2)𝛿ℎ𝑒

𝑗 ≈ 𝛽(1 − 𝑚2
𝑗 )𝛿ℎ𝑒

𝑗

We only retain the local contribution 𝜒𝑗𝑗, since longer chains of interaction only contribute at higher order,
and take 𝑚\𝑖

𝑗 ≈ 𝑚𝑗 since their difference is 𝑂(𝛿ℎ𝑒
𝑗). Combining these gives

𝑚\𝑗
𝑗 ≈ 𝑚𝑗 − 𝛽𝑚𝑖𝐽𝑖𝑗(1 − 𝑚2

𝑗 ) + 𝑂((𝛿ℎ𝑒)2)

Using the fact that 𝐽𝑖𝑗 is symmetric we can plug this back in to the equation of state to give

𝑚𝑖 = tanh (𝛽 (ℎ𝑖 + ∑
𝑗

𝐽𝑖𝑗𝑚𝑗 − 𝛽𝑚𝑖 ∑
𝑗

𝐽2
𝑖𝑗(1 − 𝑚2

𝑗 ))) (14)

The second term is referred to as the Onsager reaction term and describes the correction to the effective
field from removing the feedback overcounting. Lets think about the structure of the reaction term in the
language of RPA that we developed earlier. The reaction is given by

𝑚𝑖 ∑
𝑗

𝐽2
𝑖𝑗𝜒0

𝑗𝑗

In the language of diagrams this looks like: propagate from 𝑖 → 𝑗 via 𝐽𝑖𝑗, local bubble interaction 𝜒0 at 𝑗,
propagate back 𝑗 → 𝑖 via 𝐽𝑗𝑖. The TAP equations modify the equation of state by considering how the local
effects of polarization feed back into the system via the shortest possible chains.

6 When Does Mean Field Theory Work?
Throughout our winding tour of the many faces of mean field theory we have taken great pains to understand
exactly what we are retaining and what we are throwing away in our approximations. One question we
have not addressed is: when are we justified in using mean field theory? Under what circumstances are our
approximations appropriate? Let’s close out our discussion of MFT by tracing out the boundary of its regime
of applicability.

• Dense Networks: Consider an “infinite range” Ising model in which 𝐽𝑖𝑗 = 𝐽/𝑁 for every possible pair
of spins. Writing the Hamiltonian as 𝐻 = − 𝐽

2𝑁 (∑𝑖 𝑠𝑖)2 − ℎ ∑𝑖 𝑠𝑖, we can transform into a continuum
theory with a single variable given by

𝑍 ∝ ∫ 𝑑𝜙𝑒−𝑁𝑆(𝜙), 𝑆(𝜙) = 𝐽
2

𝜙2 − ln(2 cosh(𝛽(ℎ + 𝐽𝜙)))

As 𝑁 → ∞ we can use the saddle point method to solve the integral by evaluating the integrand at the
minimum action. So the free energy is given exactly by the action at it’s minimum, and fluctuations
don’t contribute. Intuitively, an individual spin in a fully connected network recieves signals from
every other spin. These overlapping signals tend to “average out” and produce a mean field interaction.
If a fluctuation emerges it is immediately communicated to the rest of the network. In a sparsely
connected network, by contrast, local signals can vary widely, and fluctuations have to propagate via
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local interactions which can allow distant parts of the network to differ strongly. At first glance, a
system in which every variable interacts with every other variable may seem daunting in its complexity.
Mean field theory offers a different perspective: highly connected interaction networks can sometimes
be more tractable if their structure encourages the mean field conditions. Another implication is that
one can construct a “mean field” version of a problem by finding it’s infinite range analog. For example,
the canonical mean field approach to studying spin glasses is the Sherrington Kirkpatrick model: an
infinite range Ising model with randomly distributed couplings.

• Small Fluctuations: A point we have returned to throughout, in many different forms, is that
the main approximation of mean field theory is to treat fluctuations as small. In the decomposition
𝑠𝑖 = 𝑚𝑖 + 𝛿𝑠𝑖, we roughly want our theory to satisfy something along the lines of ⟨𝛿𝑠2

𝑖 ⟩ ≪ 𝑚2
𝑖 . In

statistical physics, this is made quantitative by the Ginzburg Criterion:

𝐸𝐺 ≡
| ∫

𝑉
𝑑𝑑𝑟𝐺(𝑟)|

∫
𝑉

𝑑𝑑𝑟𝑚(𝑟)2

Where 𝐺 and 𝑚 are computed according to the field theoretic formulation of mean field theory. To find
regimes where MFT is not valid, we look for places where 𝐸𝐺 is large or possibly divergent. Remarkably,
MFT can predict it’s own demise! In the regions where MFT itself predicts large fluctuations, we know
we cannot trust the theory. In the statistical physics of the Ising model we find that near the critical
point 𝐸𝐺 diverges because the correlation length diverges, but only for 𝐷 < 4 (this gives rise to the
notion of upper critical dimension). In those cases MFT can predict the physics of the bulk phases well,
but necessarily fails to model the phase transition correctly.

• Things are Gaussian: We saw in Section 4 that mean field theory is equivalent to finding the best
approximate gaussian distribution to fit our model. One way to think about the applicability of mean
field theory is to ask how Gaussian your system is. This is common in the theory of neural networks: in
extremely wide networks at initialization the input to a given neuron is the sum of a bunch of indepent
random activations, and so approaches gaussianity by the central limit theorem. The mean field
approximation then amounts to replacing all distributions with tractable gaussians whose covariances
have been fit to match the actual correlations of the network (Schoenholz et al. 2017). Using more
sophisticated RG techniques (that were originally designed to make up for the shortcomings of mean
field theory) one can asses quantitatively from the data how important non-gaussian terms are, and
whether or not they can be ignored (Bradde and Bialek 2017).

Despite the masterclass in physics that led to the development of renormalization, mean field theory still
stands as the dominant technique to understand interacting problems. Part of this is because the conditions
under which mean field theory holds are surprisingly broad and relevant. Another reason is that it is often
the only means by which we can make progress. But really, I attribute the success of mean field theory to its
many faces. MFT is not one single idea or algorithm. It is a set of overlapping, sometimes contradictory, yet
constantly evolving ideas and techniques5. Every problem admits its own MFT, that requires its own set of
assumptions, approximations, and iterative improvements. While the techniques described in this post are
nice, I hope what you take away is something deeper and more structural.

7 Appendix
7.1 Exact Mean Field Theory Susceptibility Calculation
Let us consider Equation 6 in the case where the external field is uniform so that 𝑚𝑖 = 𝑚. Then we can write

∑
𝑘

( 𝛿𝑖𝑘
𝛽(1 − 𝑚2)

− 𝐽𝑖𝑘) 𝜒𝑘𝑗 = 𝛿𝑖𝑗 (15)

Suppose the lattice has spacing 𝑎, volume 𝑉 = 𝑁𝑎𝐷 and let ⃗𝑟𝑖 denote the spatial position of the lattice site 𝑖,
so for example 𝜒𝑖𝑗 = 𝜒(| ⃗𝑟𝑖 − ⃗𝑟𝑗|). Since the system is translationally invariant all functions on the lattice only

5This post has not come close to touching on all of the different mean field theories that have been developed. Some notable
ones I have enjoyed learning about are dynamical mean field theory, the replica methods in spin glasses, and a deeper exploration
of the TAP equations and their interpretation in terms of message passing.

11



depend on the separation between lattice points, and the matrices are diagonalized in fourier space. The
lattice Fourier transform is given by

̃𝑓( ⃗𝑞) = ∑
⃗𝑟

𝑓( ⃗𝑟)𝑒−𝑖 ⃗𝑞⋅ ⃗𝑟, 𝑓( ⃗𝑟) = 1
𝑉

∑
⃗𝑞

̃𝑓( ⃗𝑞)𝑒𝑖 ⃗𝑞⋅ ⃗𝑟𝑗

It follows that we can write the Kronecker Delta in fourier space as

𝛿𝑖𝑗 = 1
𝑉

∑
⃗𝑞

𝑒𝑖 ⃗𝑞⋅( ⃗𝑟𝑖− ⃗𝑟𝑗)

To take the fourier transform of 𝐽𝑖𝑗 we note that 𝐽( ⃗𝑟) = 𝐽 iff ⃗𝑟 is a lattice vector of length 𝑎. Thus for each
dimension 𝑑 the fourier transform gets a contribution 𝐽𝑒±𝑖𝑞𝑑𝑎, where the ± comes from the forward and
backward direction that a lattice vector can point along a given dimension. This gives

̃𝐽 ( ⃗𝑞) = 2𝐽
𝐷

∑
𝑑=1

cos(𝑞𝑑𝑎)

Consider then the following matrix product

∑
𝑘

𝐽𝑖𝑘𝜒𝑘𝑗 = 1
𝑉 2 ∑

⃗𝑟𝑘

∑
⃗𝑞, ⃗𝑞′

𝜒̃( ⃗𝑞) ̃𝐽( ⃗𝑞′)𝑒𝑖( ⃗𝑞′⋅ ⃗𝑟𝑖− ⃗𝑞⋅ ⃗𝑟𝑗)𝑒𝑖 ⃗𝑟𝑘⋅( ⃗𝑞− ⃗𝑞′) = 1
𝑉

∑
⃗𝑞

𝜒̃( ⃗𝑞) ̃𝐽( ⃗𝑞)𝑒𝑖 ⃗𝑞⋅( ⃗𝑟𝑖− ⃗𝑟𝑗)

Where we have used the fact that
1
𝑉

∑
⃗𝑟𝑘

𝑒𝑖 ⃗𝑟𝑘⋅( ⃗𝑞− ⃗𝑞′) = 𝛿( ⃗𝑞 − ⃗𝑞′)

to perform the sums over ⃗𝑟𝑘 and ⃗𝑞′. Similarly we have

∑
𝑘

𝛿𝑖𝑘
𝛽(1 − 𝑚2)

𝜒𝑘𝑗 = 1
𝑉

∑
⃗𝑞

1
𝛽(1 − 𝑚2)

𝜒̃( ⃗𝑞)𝑒𝑖 ⃗𝑞⋅( ⃗𝑟𝑖− ⃗𝑟𝑗)

equating the fourier transforms on the left and right hand sides of Equation 15 then gives

𝜒̃( ⃗𝑞) = 1
𝜒−1

0 − 2𝐽 ∑𝐷
𝑑=1 cos(𝑞𝑑𝑎)

where 𝜒0 ≡ 𝛽(1 − 𝑚2). Consider the behavior on scales much larger than the lattice spacing where 𝑞𝑑𝑎 ≪ 1.
Then to lowest order in 𝑞 we have

𝜒̃( ⃗𝑞) ≈ 1
𝜒−1

0 − 2𝐽𝐷 + 𝐽𝑎2| ⃗𝑞|2

Define 𝜅2 ≡ (𝜒−1
0 − 2𝐽𝐷)/(𝐽𝑎2), 𝑐 ≡ 𝐽𝑎2, and the correlation length 𝜉 ≡ 1/𝜅. Then

𝜒( ⃗𝑟) = 1
𝑐

∫ 𝑑𝐷 ⃗𝑞
(2𝜋)𝐷

𝑒𝑖 ⃗𝑞⋅ ⃗𝑟

| ⃗𝑞|2 + 𝜅2 = 1
𝐽𝑎2

𝜅𝐷/2−1

(2𝜋)𝐷/2

𝐾𝐷/2−1(𝜅𝑟)
𝑟𝐷/2−1

where 𝑟 = | ⃗𝑟| and 𝐾𝜈 is the modified bessel function of the second kind. When 𝑟 ≫ 𝜉 we can take the
asymptotic form of the Bessel function to get

𝜒( ⃗𝑟) ∝ 𝑒−𝑟/𝜉

𝑟(𝐷−1)/2

susceptibility (and correlation) looks power law out to the correlation length 𝜉 after which correlations get
exponentially suppressed. You can think about 𝜉 as the average “size” of a fluctuation. Consider near the
critical point where 𝑚 ≈ 0, and let 𝑇𝑐 ≡ 2𝐽𝐷 be the mean field transition temperature we derived in Section 2.
Then

𝜉2 = (𝐽𝑎)2

𝑇 − 𝑇𝑐

12



We see that the correlation length diverges as |𝑇 − 𝑇𝑐|−1/2 at the critical point. At the phase transition
correlations decay purely as a power law and there are fluctuations at all scales. This behavior is a signal the
mean field theory breaks down at the critical point, and renormalization methods are required. The scale free
behavior also points to the structure of the RG solution, but that is a story for another time.
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